Environment (impacting both ambient air and confined animal space air) that might otherwise be more evenly distributed in a range-grazing situation (Withgott & Brennan, 2011).

As such, the answer to balancing anthropogenic and natural variables causally related to air quality lies with our ability to engineer systems that work to minimize anthropogenic forces upon nature. This systems approach affords natural variables to minimally impact humans, while affording anthropogenic variables to minimally impact nature. The challenge for the air quality engineer is to understand the natural variables’ air emission potential in given situations, and to engineer the anthropogenic systems (such as our interior coating spray booth project) in such a manner that allows for the natural variables’ air emissions even while mitigating exposures of those emissions to humans.

For example, we understand that hydrocarbons have the natural potential to form volatile organic compounds (VOCs), even without human interaction in nature. However, we also see the use of hydrocarbon compounds in synthetic products such as interior coating materials and other paint products, and subsequently incorporate those hydrocarbons into our synthetic product designs. The engineer’s job then becomes one of learning to forecast and quantify the natural emission rates of the VOC from the hydrocarbon compounds contained as an ingredient in the synthetic paint products. Once the VOC emission rates have been forecasted for a given product, the work system (such as the interior coating spray booth process) can be evaluated for subsequent impacts to the ambient air environment and to human health. This often requires the air quality engineer to calculate emission rates into several different units of measure, to include poundage of VOC per product, poundage of VOC per hour of work exposure, poundage of VOC per year, and even tonnage of VOC per year (TCEQ, 2011). As such, the air quality engineer is practically taking something rather obscure like vapor and converting the VOC into something tangible as units of mass. When the VOC is converted into tangible units of mass as pounds or tons, statistical forecasting mathematics becomes possible (and consequently manageable) within the work system.

This concept of converting pollutants as abstract concentrations (or even percent by weight, as is common in industrial hygiene measurements) into tangible units of mass-based concentration like parts per million (ppm) or parts per billion (ppb) then becomes the air quality engineer’s primary unit of evaluation for airborne pollutants, given that ppm (as mg/L) and ppb (ug/L) can be expressed as units of mass-based concentration for almost any air pollutant represented (Phalen & Phalen, 2013).

Air quality assessments get even more interesting once the air quality engineer considers that noise may be treated as a form of either atmospheric or ambient pollution. Your textbook demonstrates this with the argument that sound energy causally related to “noise” is transmitted largely through the air environment. Suddenly, we find the need to also measure air quality through measures of dimensionless units of decibels (dB) in order to adequately evaluate air quality impacts on human health.


 

PLACE THIS ORDER OR A SIMILAR ORDER WITH NURSING TERM PAPERS TODAY AND GET AN AMAZING DISCOUNT

get-your-custom-paper

For order inquiries     +1 (408) 800 3377

Open chat
You can now contact our live agent via Whatsapp! via +1 408 800-3377

You will get plagiarism free custom written paper ready for submission to your Blackboard.