WHAT IT IS USED FOR:
It is also used to measure central tendency of the numbers in a database. It can also be said that it is nothing more than a balance point between the number and the low numbers.
HOW TO CALCULATE IT:
To calculate this, just add up all the numbers, then divide by how many numbers there are. Example: what is the mean of 2, 7, and 9? Add the numbers: 2 + 7 + 9 = 18 Divide by how many numbers (i.e., we added 3 numbers): 18 ÷ 3 = 6 So the Mean is 6
SAMPLE VARIANCE:
DEFINITION:
The sample variance, s2, is used to calculate how varied a sample is. A sample is a select number of items taken from a population. For example, if you are measuring American people’s weights, it wouldn’t be feasible (from either a time or a monetary standpoint) for you to measure the weights of every person in the population. The solution is to take a sample of the population, say 1000 people, and use that sample size to estimate the actual weights of the whole population.
WHAT IT IS USED FOR:
The sample variance helps you to figure out the spread out in the data you have collected or are going to analyze. In statistical terminology, it can be defined as the average of the squared differences from the mean.
HOW TO CALCULATE IT:
Given below are steps of how a sample variance is calculated:
· Determine the mean
· Then for each number: subtract the Mean and square the result
· Then work out the mean of those squared differences.
To work out the mean, add up all the values then divide by the number of data points.
First add up all the values from the previous step.
But how do we say “add them all up” in mathematics? We use the Roman letter Sigma: Σ
The handy Sigma Notation says to sum up as many terms as we want.
PLACE THIS ORDER OR A SIMILAR ORDER WITH NURSING TERM PAPERS TODAY AND GET AN AMAZING DISCOUNT